Translates and multipliers of abelian difference sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Abelian Hadamard Difference Sets

Difference sets wi th pa rame te r s (v, k, 2) m a y exist even if there are no abelian (v, k, ,~) difference sets; we give the first k n o w n example of this s i tuat ion. This example gives rise to an infinite family of non -abe l i an difference sets w i th pa rameters (4t 2, 2t a t, t 2 t), where t = 2 q. 3 r5 . 1 0 ' , q, r, s >/0, and r > 0 ~ q > 0. N o abel ian difference sets w i th th...

متن کامل

Difference sets in abelian 2-groups

If G is an abelian group of order u, and D is a subset of G with k elements such that every nonidentity element can be expressed 2 times in the form a b, where a and b are elements of D, then D is called a (u, k, A) difference set in G. The order n of the difference set is k 1. In this paper we consider the parameter values v = 22di 2, k = 22d+ ’ 24 ,I= 22d 2d, and n=22d. The rank r of G is the...

متن کامل

On non-Abelian group difference sets

This paper is motivated by R. H. Bruck’s paper[3], in which he proved that the existence of cyclic projective plane of order n ≡ 1 (mod 3) implies that of a non-planar difference set of the same order by proving that such a cyclic projective plane admits a regular non-Abelian automorphism group using n as a multiplier. In this paper we will discuss in detail the possibility of using multipliers...

متن کامل

A two-to-one map and abelian affine difference sets

Let D be an affine difference set of order n in an abelian group G relative to a subgroup N . Set H̃ = H \ {1, ω}, where H = G/N and ω = ∏ σ∈H σ. Using D we define a two-to-one map g from H̃ to N . The map g satisfies g(σ) = g(σ) and g(σ) = g(σ−1) for any multiplier m of D and any element σ ∈ H̃. As applications, we present some results which give a restriction on the possible order n and the grou...

متن کامل

Some Restrictions on Orders of Abelian Planar Difference Sets

The Prime Power Conjecture (PPC) states that abelian planar difference sets of order n exist only for n a prime power. Lander and others have shown that orders divisible by certain composites can be eliminated. In this paper we show how to extend this list of excluded orders.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1978

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1978-0462976-4